
The directed Hausdorff distance between1

imprecise point sets2

Christian Knauer∗ Maarten Löffler† Marc Scherfenberg∗3

Thomas Wolle‡4

Abstract5

We consider the directed Hausdorff distance between point sets in the plane, where one or both point sets6
consist of imprecise points. An imprecise point is modelled by a disc given by its centre and a radius.7
The actual position of an imprecise point may be anywhere within its disc. Due to the direction of the8
Hausdorff Distance and whether its tight upper or lower bound is computed, there are several cases to9
consider. For every case we either show that the computation is NP-hard or we present an algorithm with10
a polynomial running time. Further we give several approximation algorithms for the hard cases and show11
that one of them cannot be approximated better than with factor 3, unless P=NP.12

1 Introduction13

The analysis and comparison of geometric shapes are essential tasks in various application areas14
within computer science, such as pattern recognition and computer vision. Beyond these fields also15
other disciplines evaluate the shape of objects such as cartography, molecular biology, medicine,16
or biometric signal processing. In many cases patterns and shapes are modeled as finite sets of17
points.18

The Hausdorff distance is an important tool to measure the similarity between two sets of points19
(or, more generally, any two subsets of a metric space). It is defined as the largest distance from20
any point in one of the sets, to the closest point in the other set (see Section 2 for a formal21
definition). This distance is used extensively in pattern matching.22

Data imprecision is a phenomenon that has existed as long as data is being collected. In practice,23
data is often sensed from the real world, and as a result has a certain error region. On the one hand,24
many application fields of computational geometry use algorithms that take this into account.25
However, these algorithms are mostly heuristics, and do not benefit from theoretical guarantees.26
On the other hand, algorithms from computational geometry are provably correct and efficient,27
often under the assumption that the input data is correct. If we want these algorithms to be used28
in practice, they need to take imprecision into account in the analysis. Thus not surprisingly, data29
imprecision in computational geometry is receiving more and more attention.30

In this paper, we study several variants of the important and elementary problem of computing31
the Hausdorff distance under the Euclidean metric between imprecise point sets.32

∗Institute of Computer Science, Freie Universität Berlin, Germany, {christian.knauer,scherfen}@mi.fu-berlin.de
†Computer Science Department, University of California, Irvine, USA, mloffler@uci.edu
‡NICTA Sydney, Australia, thomas.wolle@nicta.com.au

1

, 2

1.1 Related Work1

The Hausdorff distance is one of the most studied similarity measures. For a survey about simi-2
larity measures and shape matching refer to [3]. A straightforward, naive algorithm computes the3
Hausdorff distance between two point sets A and B consisting of m and n points, respectively, in4
O(mn) time. Using Voronoi diagrams and a more sophisticated approach the running time can5
be reduced to O((m+ n) log n) [2].6

The study of imprecision within computational geometry started around twenty years ago, when7
Guibas et al. [7] introduced epsilon geometry as a way to handle computational imprecision. In8
this model, each point is assumed to be at most ε away from its given location.9

For a given measure on a set of imprecise points, one of the simplest questions to ask in this model10
is what are the possible output values? Each input point can be anywhere in a given region,11
and depending on where each point is, the output will have a different value. This leads to the12
problem of placing the points in their regions such that this value is minimised or maximised. One13
of the first results of this kind is due to Goodrich and Snoeyink [6], who show how to place a set14
of points on a set of vertical line segments such that the points are in convex position and the15
area or perimeter of the convex hull is minimised in O(n2) time. A similar problem is studied by16
Mukhopadhyay et al. [12], and their result was later generalised to isothetic line segments [11].17

Nagai and Tokura [13] thoroughly study the computation of lower and upper bounds for a variety18
of region shapes and measures; in particular they study the diameter, the width, and the convex19
hull, and all their algorithms run in O(n log n) time. However, not all of their bounds are tight. Van20
Kreveld and Löffler [10] study the same problems and give algorithms to compute tight bounds,21
though the running times of the algorithms can be much higher and some variants are proven to22
be NP-hard.23

Ahn et al. [1] study the efficient computation of the discrete Fréchet distance when the input24
is imprecise. The discrete Fréchet distance is a distance function which measures the similarity25
between two point sequences. The authors give polynomial time algorithms for computing the26
lower bound and approximation algorithms for computing the upper bound and the lower and27
upper bound of the distance under translation.28

Despite the fact that both the Hausdorff distance and data imprecision are well-studied, we could29
not find any previous work on the combination. Since the application areas that use the Hausdorff30
distance (as well as other comparison measures) have to deal with imprecise data in practice, a31
better understanding of the implications is needed.32

1.2 Contribution33

In this paper, we assume that an imprecise point is modelled by a disc with a given centre and34
radius, that is, the real location of the point can be anywhere inside the specified disc. In general,35
it is possible that the discs intersect. We assume we have two sets of points, P and Q, and that36
at least one of them is imprecise. We want to compute the directed Hausdorff distance from P37
to Q. If P or Q is imprecise, then this does not lead to a unique number as answer anymore;38
instead, we want to compute the smallest (lower bound) and largest (upper bound) value this39
number can attain. Since there are three combinations of P , Q or both being imprecise, and two40
bounds to compute for each combination, we have different problems to solve. Additionally, some41
of these problems become easier if we restrict the model of imprecision in some way, for example42
by requiring the imprecision discs to be disjoint, or at least that they have a limited intersection43
depth, or by requiring that all discs have the same radius. Our results are summarised in Table 1.44

In the next section, we review some definitions and structures that we use to obtain our results.45
After that, we present our three main results. In Section 3, we give a general algorithm for46
computing the upper bound, which works in all settings in the table, though it can be simplified47

, 3

setting tight lower bound tight upper bound

h(P̃ , Q) [general] O(n log n) O(n log n)

h(P, Q̃) [general] NP-hard∗, 4-APX in O(n3 log3 n) O(n log n)

[disjoint unit discs] 3-APX-hard, 3-APX in O(n10 log n) O(n log n)

h(P̃ , Q̃) [general] NP-hard O(n2)

[const. depth in P̃] O(n log n)

Tab. 1: P and Q are point sets and P̃ and Q̃ are imprecise point sets. Results are shown for the
case when all sets have O(n) elements. ∗can be computed exactly in O(n3) time if the

discs are disjoint and the answer is smaller than r(
√

5− 2
√

3− 1)/2 where r is the radius
of the smallest disc in Q̃.

P̃

P

(a)

P

Q

(b)

Fig. 1: (a) An example of imprecise point sets. (b) h(P,Q) is realised by the pair of points indicated
by the arrow.

(conceptually) in some settings. In Section 4, we prove the hardness of computing the lower bound1
in most settings. Finally, in Section 5, we give algorithmic results for computing the lower bound,2
exactly in some cases and approximately in others.3

2 Preliminaries4

In this section, we will review a number of known concepts and structures from computational5
geometry, as well as define variations of them that we will need later.6

Imprecise Points An imprecise point is a closed disc in the plane. Let P̃ = {p̃1, . . . , p̃m} and7
Q̃ = {q̃1, . . . , q̃n} denote two imprecise point sets consisting of m and n closed discs, respectively.8

We call a point set P = {p1, . . . , pm} a precise realisation of P̃ = {p̃1, . . . , p̃m} if pi ∈ p̃i for all i.9
We also write P b P̃ in this case.10

Figure 1(a) shows an example of such a set of imprecise points and a possible precise realisation.11

Hausdorff Distance The directed Hausdorff distance h from a point set P = {p1, . . . , pm} to a
point set Q = {q1, . . . , qn} with an underlying Euclidean metric is defined as

h(P,Q) = max
p∈P

min
q∈Q
‖p− q‖

and can be computed in O ((n+m) log n) time, see Alt et al. [2]. An example is shown in Fig-12
ure 1(b).13

, 4

We define the directed Hausdorff distance between a precise and an imprecise or two imprecise
point sets as the interval of all possible outcomes for that distance.

h(P, Q̃) =
{
h(P,Q) | Q b Q̃

}
, h(P̃ , Q) =

{
h(P,Q) | P b P̃

}
h(P̃ , Q̃) =

{
h(P,Q) | P b P̃ , Q b Q̃

}
Further, we denote the tight upper and lower bounds of this intervall by hmax and hmin, respec-
tively, for example

hmax(P, Q̃) = maxh(P, Q̃) and hence h(P, Q̃) = [hmin(P, Q̃), hmax(P, Q̃)].

Voronoi Diagrams The Voronoi diagram of a set Q of n points (or sites) in the plane is the1
decomposition of the plane into cells such that all points in a cell share a common nearest site2
in Q. An additively weighted Voronoi diagram (also known as Apollonius diagram) of a set of3
weighted sites is a generalisation of the Voronoi diagram. Intuitively, we can view the weighted4
sites as discs whose radii correspond to their weights. If the weights are positive and the resulting5
discs do not overlap then the additively weighted Voronoi diagram corresponds to the Voronoi6
diagram of the discs. Formally, the additively weighted Voronoi diagram (of a set Q of weighted7
sites) decomposes the plane into cells (such that all points in a cell share a common nearest site8
in Q), where the weight of a site is subtracted from its distance to a point in the plane. Note that9
this definition does not require the weights to be positive. Observe that adding a constant amount10
to all weights does not change the structure of the diagram. Hence it is possible to use a Voronoi11
diagram data structure which only handles non-negative weights by adding the absolute amount of12
the largest disc radius to all weights. Voronoi diagrams and additively weighted Voronoi diagrams13
can be computed in O(n log n) time [5].14

For a given set Q̃ of n discs in the plane, we define the inverted additive Voronoi diagram or iaVD15
to be the additively weighted Voronoi diagram whose sites are the centres of the discs, where the16
weight of each site corresponds to the negative radius of the disc. Hence, the iaVD partitions the17
plane into cells, where a point x in the plane is associated to a disc in Q̃ in the following way: For18
point x, we consider the point in each disc in Q̃ that is furthest away from x, and among those19
points, the one that is closest to x determines the disc we associate with x. See Figure 3(a) for an20
example. The edges of the iaVD are pieces of hyperbolae. Adding the radius of the largest disc to21
the weight of each site we get an additively weighted Voronoi diagram with non-negative weights22
only, and such the iaVD can be computed in O(n log n) time.23

Geometric k-Centre In the geometric k-centre problem, we are given a set P of points in the24
plane which should be covered by k discs of the same radius. The objective is to minimise the25
radius of these discs. This problem is known to be NP-hard, but can be approximated within a26
factor 2 [4] in O(n log k) time.27

Matching The maximum matching problem in a bipartite graph G = (V,E) is to find a set of28
vertex-disjoint edges that is as large as possible. Using the algorithm of Hopcroft and Karp [8],29
this problem can be solved optimally in O(|E|

√
|V |) time.30

3 Algorithms for computing the tight upper bound31

In this section, we consider the following problem. Let P̃ and Q̃ be two sets of discs, of size m32
and n, respectively. The radii may all be different; an example input is shown in Figure 2(a).33
Our aim is to compute point sets P b P̃ and Q b Q̃ such as to maximise the directed Hausdorff34

, 5

Q̃

P̃

(a)

Q̃

P̃

(b)

Fig. 2: (a) An example input of two imprecise point sets. (b) The optimal solution. The points in
Q are all placed as far away from p̂ as possible.

distance h(P,Q). In other words, we want to place the points in P and Q such that one point of1
P is as far away as possible from all points in Q. The placements of the remaining points of P do2
not matter. So, we need to identify which point p̂ ∈ P will play this important role. We need to3
place p̂ such that after we placed all points in Q as far away from p̂ as possible, this distance is4
maximised. Figure 2(b) shows the optimal solution for the example.5

In the next section, we first describe a basic algorithm that solves the problem in quadratic time.6
After that, we show that under certain conditions, the running time can be improved to O(n log n).7

3.1 Basic algorithm8

We will first compute the inverted additive Voronoi Diagram (iaVD) of Q̃ in O(n log n) time.9
Recall from Section 2 that this is the additively weighted Voronoi diagram of the centres of Q̃,10
weighted by their negative radii. Using this iaVD, we can identify three possible placement types11
for p ∈ p̃ ∈ P̃ that are locally optimal inside p̃, as is illustrated in Figure 3(b):12

1. A vertex of the iaVD that lies inside disc p̃.13

2. An intersection point between a Voronoi edge and the boundary of p̃.14

3. A point on the boundary of p̃ that is furthest away from a site in the iaVD. This point lies15
in the Voronoi cell that also contains the centre of p̃, since it lies on the line going through16
the centre of its Voronoi site and the centre of p̃ and every Voronoi cell is star shaped.17

We can then iterate over all p̃ ∈ P̃ and its locally optimal placements, and we place a point p18
at the local optimal placements, as if it were p̂. We determine p̂ by keeping track of the locally19
optimal placement p ∈ p̃ such that the shortest distance between p and (the furthest point on)20
any disc in Q̃ is maximised.21

Once p̂ is known, we place all points in Q as far away from p̂ as possible, and all points in P \ {p̂}22
anywhere inside their discs. The result is shown in Figure 2(b). As it is possible that there are23
O(mn) locally optimal placements of the second type (namely: an intersection between a disc24
boundary and a Voronoi edge), we conclude with the following theorem.25

Theorem 1: Given two sets P̃ and Q̃ of imprecise points of size m and n, respectively, we can26
compute hmax(P̃ , Q̃) and precise realisations P b P̃ and Q b Q̃ with h(P,Q) = hmax(P̃ , Q̃) in27
O(nm+ n log n) time.28

, 6

Q̃

P̃

(a)

Q̃

P̃

p2 p4

p6

p5

p3

p1

(b)

Fig. 3: (a) The inverted additive Voronoi Diagram (iaVD) of Q̃. (b) The point set P placed locally
optimal; p4 is a type 1 placement, p1, p6 are type 2 and p2, p3, p5 are type 3.

3.2 Faster algorithms in special cases1

In practice, it may be unlikely that we have to consider O(mn) locally optimal placements. Indeed,2
in this section we show how the above result can be improved under certain assumptions. To speed3
up the algorithm, we make some observations about the nature of locally optimal placements.4

Lemma 1: Let p̃ be a disc in P̃ , and let q̃1 and q̃2 be two discs in Q̃, such that part of the bisector5
of q̃1 and q̃2 forms an edge e of the iaVD that slices through p̃ (that is, e is not connected to a6
vertex of the iaVD inside p̃). Then the optimal placement of p occurs on the same side of e where7
the centre of p̃ is.8

Proof: Let pc be the centre of p̃, qc1 the centre of q̃1 and qc2 the centre of q̃2. Now let f1 be the9
point on the boundary of p̃ that is furthest away from qc1 (this would be a type 3 placement if10
q̃1 was the only element of Q̃), and similarly let f2 be the point furthest away from qc2. Observe11
that e is part of a hyperbolic arc, of which qc1 and qc2 are the foci. Suppose w.l.o.g. that pc is on12
the same side of e as qc1.13

Now, suppose that the optimal placement p is on the other side of e (that is, on the side of qc2).14
Then qc2, pc and f2 lie on a line. Because qc2 is a focus of e, the half-line starting from qc2 in15
the direction of pc and f2 intersects e only once. Since qc2 and pc lie on opposite sides of e, it16
follows that pc and f2 must lie on the same side of e. This means that along the boundary of17
p̃, the intersection points with e have a better value than any other point on the side of qc2, in18
particular, better than p, which is a contradiction. (Note that if there are other cells of the iaVD19
involved, the value of p could only be lower). �20

This lemma basically says that if we want to place a certain point p locally optimally, we can21
start looking by walking from the centre of p̃ and never have to cross edges of the iaVD that22
slice through p̃. This can still mean, however, that we have to inspect a quadratic number of23
placements, but we can quantify it as follows.24

Corollary 1: Let p̃ be a disc in P̃ , and suppose that the iaVD has t vertices inside p̃. Then we can25
find the locally optimal placement for p in O(t) time.26

This immediately implies that if the discs of P̃ do not overlap, we can simply place all points p27
independently in linear time. Figure 4 shows an example where there are a quadratic number of28
placements of type 2, but which do not all have to be inspected because of Lemma 1.29

In fact, we can show the same result for something slightly stronger than disjoint discs. Now,30
assume that the intersection depth of the discs of P̃ is at most some constant c. Then, clearly,31

, 7

Q̃
P̃

(a)

Q̃
P̃

(b)

Fig. 4: (a) There could be a quadratic number of intersections between the edges of the iaVD of
Q̃ and the discs in P̃ . (b) However, when an edge slices through a disc p̃, we only need to
inspect the cell that contains the centre of p̃.

each vertex of the iaVD can appear in at most c discs of P̃ . So, if each disc p̃i contains ti vertices1
of the iaVD, we have

∑
i ti ≤ cn, and we can find all locally optimal placements in O(n) time.2

Theorem 2: Given two sets P̃ and Q̃ of imprecise points of size m and n, respectively, where the3
discs in P̃ have constant intersection depth, we can compute hmax(P̃ , Q̃) and precise realisations4
P b P̃ and Q b Q̃ with h(P,Q) = hmax(P̃ , Q̃) in O((m+ n) log(m+ n)) time.5

The algorithm described in this section works in the most general setting. In some more specific6
settings, the algorithm can be simplified. For example, if Q is a set of precise points, or if the7
regions of Q̃ are unit discs, the iaVD is the normal Voronoi diagram. This, however, does not8
influence the running time. If, on the other hand, P is a set of precise points, then there are only9
m possible locations for p̂, and we do not need to look for all three placement types. In this case,10
we can compute hmax(P, Q̃) more efficiently than in the general case, as stated in the following11
theorem.12

Theorem 3: Given a set P of points and a set Q̃ of imprecise points of size m and n, respectively,13
we can compute hmax(P, Q̃) and a precise realisation Q b Q̃ with h(P,Q) = hmax(P, Q̃) in O((m+14
n) log n) time.15

4 Hardness results for tight lower bounds16

In this section, we consider a tranformation from the known NP-complete problem planar 3-17
sat [9] to the problem of computing hmin(P, Q̃) for a set P of points and a set Q̃ of discs with radius18
r. In the planar 3-sat problem, we are given as input a 3-sat formula f with the additional19
property that the graph G(f) is planar, where G(f) has a vertex for each variable and each clause20
in f , and there is an edge between a variable vertex and a clause vertex if the variable occurs in21
the clause. Having the boolean formula f and a planar embedding of G(f), the transformation is22
as follows (see Fig. 5(a,b) for a general overview):23

For each variable in f (or variable vertex v in G(f)), we construct a cycle C of alternating points in24
P and discs in Q̃. The discs have fixed radius r, and the distance between consecutive points and25
discs along the cycle is ε, such that r = 2.5ε (see Fig. 5(c)). There may be bends up to a certain26
angle, and also other geometric features necessary to connect cycles and chains (defined below).27
When looking only at the points PC and discs Q̃C corresponding to a cycle C, we observe that by28
the construction of C, there are two realisations QC0 and QC1 of Q̃C , such that h(PC , QC0) = ε and29
h(PC , QC1) = ε (see Fig. 5(d) and 6(c)). These two realisations represent the two possible boolean30
values the variable for that cycle can have. Similar observations can also be made about chains to31
be described next.32

, 8

Q̃

P

ε
2.5ε

(a) (b) (c) (d)

Fig. 5: (a) planar embedding of G(f), circles represent variables and rectangles represent clauses;
(b) rough overview of how G(f) is transformed into P and Q̃, some details are misrepre-
sented; (c) alternating points and discs with geometric details; (d) two realisations with
Hausdorff distance ε, representing opposite boolean values;

For each edge {v, c} in G(f), we construct a chain of alternating points in P and discs in Q̃,1
where the discs have radius r, and the distance between consecutive points and discs along the2
chain is ε (see Fig. 5(c,d)). The chain connects the cycle corresponding to the variable v and the3
representation of clause c. More precisely, one end of this chain is a disc that will be part of a4
representation of clause c (see below for details). And the other end of this chain is a point p that5
is placed near a disc q̃ ∈ Q̃ of the cycle C for variable v, such that p has a distance of ε to either6
QC0 ∩ q̃ or QC1 ∩ q̃, depending on whether v occurs negated or non-negated in c (see Fig. 6(b,d)).7
Also chains may have bends.8

Each clause (or clause vertex c in G(f)) is represented by three discs and one additional point p∗,9
such that the disc centres lie on the vertices of an equilateral triangle, and the point has distance10
ε to each of the discs, and the three discs are ends of chains that connect to cycles that correspond11
to the three literals in the clause (see Fig. 6(a)).12

Theorem 4: Let P be a precise point set and Q̃ be an imprecise point set of pairwise disjoint discs.13
It is NP-hard to compute a δ-approximation of the directed Hausdorff distance hmin(P, Q̃) for14
1 ≤ δ < 3.15

Proof: For a given instance f to the planar 3-sat problem, let G(f) be the planar graph16
corresponding to f , embedded such that all variables are on a line, and all clauses are on either17
side of them, see Fig 5(a) (G(f) can always be drawn in this way [9]). From this embedding, we18
compute (as described above) a set P of precise points, a set Q̃ of imprecise points, and numbers19
ε > 0 and r = 2.5ε.20

Claim 1: If f is satisfiable, then hmin(P, Q̃) ≤ ε.21

Proof of Claim 1: We consider an assignment with boolean values of the variables in f , such that22
f is satisfied, and we need to show that there exists a realisation Q b Q̃, such that h(P,Q) ≤ ε.23
(Note that by construction, there is no realisation Q′ b Q̃, such that h(P,Q′) < ε.) For each cycle24
C of a variable, we choose either QC0 or QC1 as realisations of the imprecise point set Q̃C , depending25
on whether the variable is false or true. Discs on chains are realised in the following way: at the26
ending of the chain that connects to a cycle C, we have a point p near a disc q̃ ∈ Q̃C , and q̃ is27
realised by a point q. The next object along the chain is a disc q̃′ (see Fig. 6(b)). We realise q̃′ in28
either of two ways as depicted in Fig. 6(c), depending on whether the distance between p and q29
is equal to ε or greater than ε. This corresponds to a variable being either true or false. And the30
boolean value of the corresponding literal is then propagated to the other end of the chain to a31
clause c. Since f is satisfiable, there is at least one literal in each clause that satisfies the clause.32
Hence, there is at least one chain with a realisation such that the point p∗ has distance at most ε33
to a point of this realisation. �34

, 9

p∗

ε
ε

εεεε

Chain 1

Chain 2

Cycle

p

(a) (b) (c) (d)

q̃′

q̃

Fig. 6: (a) the endings of three chains arranged to representing a clause; (b) connection of a chain
to a cycle with geometric details, the chain starts with p followed by q̃′, all other points and
discs belong to the cycle; (c) two realisations with Hausdorff distance ε of the structure
in the left subfigure; (d) two chains connecting to the same cycle where the chains tap
opposite boolean values;

Claim 2: If f is not satisfiable, then hmin(P, Q̃) ≥ 3ε.1

Proof of Claim 2: We will prove the contraposition, namely if hmin(P, Q̃) < 3ε, then f is2
satisfiable. We consider a realisation Q b Q̃ with h(P,Q) < 3ε, and we need to construct a3
variable assignment that satisfies f . We first observe that the only way where two points in P4
can be matched to the same point q ∈ q̃ ∈ Q̃ is where a chain connects to a cycle. (Otherwise,5
the distance between the two points in P is larger than 6ε, and hence, they cannot be matched to6
the same point q.) And in this case, one of the points in P is the end point of a chain, the other7
point in P belongs to a cycle, and q̃ belongs to the same cycle (see Fig. 6(b)). From this we make8
an observation about how the points along chains and cycles are matched to discs along the same9
chains and cycles. Let us consider the sequence p0, q̃0, p1, q̃1, p2, q̃2, ... of points and discs ordered10
along a fixed cycle C. Exactly one of the following two things is true for all i = 0, 1, 2, ... (modulo11
length of C):12

• pi is matched to a point qi ∈ q̃i, i.e. ||pi, qi|| < 3ε; or13

• pi is matched to a point qi−1 ∈ q̃i−1, i.e. ||pi, qi−1|| < 3ε14

In other words, each point on C is matched to the next disc on C in clockwise order, or each point15
on C is matched to the next disc on C in counter-clockwise order, but there is no mix of these16
along C. From these two possibilities for cycle C, we derive the boolean value of the variable17
corresponding to C. This assignment is in accordance with the two realisations QC0 and QC1 (as18
defined above), which represent false and true. What is left to show is that this assignment satisfies19
f . To see this, we consider any clause c of f and argue that c is satisfied. From the construction,20
we know that c is represented by one point p∗ ∈ P and three discs being the endings of three21
chains. There must be a point q ∈ Q such that ||p∗, q|| < 3ε, and q must lie in one of the discs22
that represent the clause c. This disc q̃0 is the ending of a chain q̃0, p0, q̃1, p1, q̃2, ..., pj . In a similar23
way as above, we conclude for this chain that:24

• p∗ is matched to a point q0 ∈ q̃0, i.e. ||p∗, q0|| < 3ε; and25

• pi is matched to a point qi+1 ∈ q̃i+1, for i = 0, ..., j − 1; and26

• pj is matched to a point qj ∈ q̃j , for some disc q̃j on some cycle C27

The variable corresponding to C has a boolean value, according to the realisation of the discs28
along C. Depending on whether this variable occurs negated or non-negated in the clause c,29

, 10

Q
P̃

Fig. 7: Placing points in P as close as possible to their closest neighbour in Q. A point in P is
hidden by a point in Q when the points are identical.

the chain q̃0, p0, q̃1, p1, q̃2, ..., pj is connected to the cycle C, such that “the boolean value true is1
propagted along the chain”. Hence, by construction we have that the boolean value of the variable2
corresponding to C satisfies the clause c. �3

The proof of Theorem 4 follows now from Claim 1 and 2, and from observing that the construction4
can be done without any intersection between discs and/or points, and such that chains and/or5
cycles are far enough apart from each other not to interfere. We also note that the size of P and6
Q̃ is polynomial in the size of G(f), which follows from our planar embedding of G(f). �7

5 Algorithms for tight lower bounds8

In this section we present algorithms for computing the minimum of h(P̃ , Q) and h(P, Q̃). As we9
have seen in the previous section, the latter problem is NP-hard and even hard to approximate10
in some settings. In the following we give a 4-approximation for the general case, an optimal11
3-approximation for disjoint discs and an algorithm for the case which is not NP-hard when the12
Hausdorff distance is small. Many results in this section rely on similar ideas. Therefore, we13
will describe several (sub-) algorithms with different approximation factors and running times14
depending on the value d of the optimal solution. Afterwards, we discuss how to apply them to15
obtain the results claimed in Table 1.16

5.1 Algorithm PlaceTogether17

In this section, we describe an algorithm for the case where we have an imprecise point set P̃ and18
a precise point set Q. We place all points in P̃ as close to a point in Q as possible. Fig. 7 shows19
an example. For each pair (p̃, q) with p̃ ∈ P̃ and q ∈ Q we could simply compute the placement20
p ∈ p̃ minimizing the Hausdorff distance and keep track of the longest distance over all pairs. This21
takes O(mn) time.22

However, unless n is exponentially larger than m we can do better because of the following obser-23
vation:24

Observation 1: Given a disk p̃ and a point set Q. The point in Q closest to the centre of p̃ is also25
closest to any point in p̃.26

As a consequence, we can do the following. First we compute, in O(n log n) time, the Voronoi27
diagram of Q. Then, we locate the centre of each point in P̃ in this Voronoi diagram in total28
O(m log n) time. Once located, we place in constant time each point p ∈ p̃ as close as possible to29
the site whose Voronoi cell contains the centre of p̃.30

Theorem 5: Let P̃ denote an imprecise point set consisting of m discs and Q denote a precise point31
set consisting of n points. The tight lower bound of h(P̃ , Q) can be computed in O(min{mn, (m+32
n) log n}) time.33

, 11

P

Q̃

(a)

P

Q̃

(b)

Q̃

P

(c)

Fig. 8: There are only polynomially many candidates for the infimum of h(P, Q̃) which are de-
termined by (a) one point of P , (b) by two points of P or (c) three or more points of
P .

5.2 Subalgorithm Candidates1

In the case where P is precise and Q̃ is imprecise, we start with a simple subalgorithm Candidates2
to establish Lemma 2. The result will be used later.3

Lemma 2: Let P denote a precise point set consisting of m points and Q̃ denote an imprecise point4
set consisting of n discs. It is possible to reduce the possible values of hmin(P, Q̃) to O(m3 +m2n)5
many candidates in O(m3 +m2n) time.6

The Hausdorff distance is realised locally at one or several points of Q and P , i.e. we only need to7
look at the placements for these points of Q. Let q ∈ q̃ ∈ Q̃ be such a placement of an imprecise8
point in Q̃ which realises the Hausdorff distance d. The distance d can be determined by q together9
with one or several points of P . These points may not be the only points of P which are matched10
to q, but among the points matched to q they have the largest distance to q. If d is determined11
by one point of P there are O(mn) possibilities, see Fig. 8(a). If d is determined by two points12
p1, p2 ∈ P the point q lies on the bisector of the line segment p1p2, see Fig. 8(b), for which O(nm2)13
possibilities exist. Finally, if d is determined by three or more points, all these points lie on a circle14
whose centre is q. Such a circle is determined by three of its points and thus there are O(m3)15
possible locations, see Fig. 8(c). The algorithm simply computes and returns all O(m3 + m2n)16
locations in O(m3 +m2n) time.17

5.3 Algorithm IndependentSets18

This algorithm computes exactly the Hausdorff distance from a precise point set P to an imprecise19
point set Q̃ when the distance is small. This is an exception to the general NP-hardness of that20
setting.21

Theorem 6: Let P denote a precise point set consisting of m points and Q̃ denote an imprecise22
point set consisting of n disjoint discs. Algorithm IndependentSets computes whether the tight23

lower bound for h(P, Q̃) is smaller than r(
√

5− 2
√

3− 1)/2 where r is the radius of the smallest24
disc in Q̃. If this is the case, the exact value of hmin(P, Q̃) is computed. The running time is25
O(m3 +m2n+ n log2 n).26

First we compute the set of possible candidates for hmin(P, Q̃) by Candidates and discard all27

values greater or equal than c = r(
√

5− 2
√

3 − 1)/2. Now we perform a binary search on the28

, 12

Q̃ P

p(d)

(a)

P

r π
6

ε

Q̃

(b)

Fig. 9: (a) The gray circle in the middle has the minimal radius of r(2/
√

3− 1) which is necessary
to intersect at least three discs of Q̃. Because all considered candidates for the minimal
Hausdorff distance are smaller than the radius of the gray disc, there are at most two
possible matching partners for each point in P . (b) The black circle has the maximal
radius c for which no two circles intersecting two different pairs of discs in Q̃ can be
stabbed by only one point q ∈ q̃. Since it has to intersect two discs in Q̃, its centre must lie
within the red lune of these discs grown by c. Furthermore, its boundary must not intersect
the green segment denoted by r because it could intersect another black circle intersecting
the upper two discs of Q̃, otherwise. Using the cosine formula it holds that (r + 2c)2 <

r2 + (2r)2 − 2r2r cos π6 . Solving the latter inequality for c yields c < r(
√

5− 2
√

3− 1)/2.

remaining values in order to determine the smallest value d for which the predicate described1
below evaluates to true. If such a candidate exists, the algorithm returns d as the value of the2

bound. Otherwise hmin(P, Q̃) ≥ r(
√

5− 2
√

3− 1)/2.3

Let p(d) denote the disc of radius d around a point p ∈ P . There must be at least one point of Q4
in p(d) to which p can be matched within a distance smaller or equal than d. The computation of5
the predicate relies on two observations: All considered values are so small that no p(d) intersects6
more than two discs of Q̃. Note that a disc that intersects more than two disjoint discs of Q̃ has7
a radius of at least r(2/

√
3 − 1), which is greater than c, see Fig. 9(a). Thus, there are at most8

two possible matching partners for each point p ∈ P .9

The second observation is that each p(d) has to intersect at least one disc of Q̃, otherwise the10
Hausdorff distance would be greater than d at p.11

We define a point p ∈ P to have degree 1 if p(d) intersects just one disc q̃ ∈ Q̃ and to have degree12
2 if it intersects two discs of Q̃.13

The predicate tests, whether hmin(P, Q̃) ≤ d. To this end we associate with each q̃i ∈ Q̃ a feasible14
region Fi and a set Ci called children of q̃i. The feasible region contains the valid placements of15
qi ∈ q̃i. The children of a point q̃i are the points of P that can only be matched to q̃i because16
otherwise hmin(P, Q̃) would be greater than d. In other words, the children of q̃i demand that qi17
is placed in its feasible region Fi. See Fig. 10(a) for an illustration.18

We restrict the feasible regions and children in an iterative manner with the help of the sub-19
algorithms Remove-degree-1-discs and Remove-degree-2-discs. If a feasible region turns20
out to be empty, the computation stops and the predicate returns false. The first sub-algorithm21
considers only points p of degree 1 and restricts the feasible regions of the discs intersected by p(d).22
The second sub-algorithm restricts the feasible regions of discs intersected by points of degree 2.23

Before calling Remove-degree-1-discs we define a set PR of all points which are not matched24
so far and set PR := P .25

, 13

P Q̃

p(d)

(a)

P

Q̃

p(d)

(b)

P

Q̃

p(d)

(c)

Fig. 10: (a) The green areas are the feasible regions of the discs in Q̃. A point q ∈ q̃ may only be
placed within its feasible region. The two points of P lying to the left have degree 1, the
point lying to right has degree 2. (b,c) The points p have degree two. Both cases show a
scenario which allows to match the points locally, i.e. only considering the set D and its
two corresponding feasible regions. Case (b) shows one of the two possible matchings.

Remove-degree-1-discs1

forall q̃i ∈ Q̃ do1

set Fi := q̃i2

set Ci := ∅3

while there is some p ∈ P such that p(d) intersects only one Fi do4

set Fi := Fi ∩ p(d)5

if Fi = ∅ then6

return false7

set Ci := Ci ∪ {p}8

set PR := PR \
⋃
i Ci9

Remove-degree-2-discs10

2

3

In line 9 the remaining points PR = P \ ⋃i Ci are points whose disc p(d) intersects exactly two4

feasible regions. It is still possible to match points in P to points in Q̃ by only analysing their5
local environment. This is done by Remove-2-discs.6

Remove-degree-2-discs7
foreach pair of feasible regions (Fi, Fj), i 6= j do1

compute the set D of discs p(d) intersecting both Fi and Fj2

if3

D can be stabbed by one point of either Fi or Fj (but not by both of them) or4

D needs one point of Fi and one point of F2 to be stabbed5

then6

restrict Fi and Fj accordingly7

if Fi = ∅ ∨ Fj = ∅ then8

return false9

Remove-degree-1-discs10

Buildgraph11

8

9

Note that, all sets D of line 2 partition the set of the discs p(d) of the points in PR. Line 7 restricts10
the matching for points of degree 2 whose matching does not interfere with the matching of points11
with other pairs of feasible regions. See Fig. 10(b) and 10(c) for an illustration of the two possible12
scenarios allowing a local matching.13

In line 11 all discs of each subset D can be stabbed by only one point of the two feasible regions Fi14
and Fj they intersect. Further, it holds that no two discs p(d) of different sets D can be stabbed15

by only one point, because d < r(
√

5− 2
√

3− 1)/2, see Fig. 9(b).16

Now, it is possible to check for a valid point matching of the remaining points in PR by computing17
the maximum matching in a bipartite graph as follows: Buildgraph builds a bipartite graph18

, 14

on the feasible regions and the sets D of the partition of the discs p(d) of the points in PR. For1
each cell D of the partition there are two edges in the graph connecting D with the two feasible2
regions that the discs in D intersect. We now compute a maximum matching on that graph. If3
this matching connects all D-vertices with a feasible region, the predicate returns true and the4
bound for the Hausdorff distance is smaller or equal than v. Otherwise the predicate returns false.5

It is simple to return a matching which realises the Hausdorff distance which the predicate proved6
to be realisable. Therefore, we first consider the feasible regions which are adjacent to a vertex7
in the maximum matching. We place the point in such a feasible region such that it intersects all8
discs in the adjacent set D of discs. For all other q̃i ∈ Q̃ we place their point qi somewhere within9
its feasible region Fi.10

Running time. The algorithm consists of three phases: It first computes a polynomial set of11
candidates which takes O(m3 + m2n) time. On this set we perform a binary search using the12
predicate. The computation of the predicate is done by some recursive calls of the two sub-13
algorithms Remove-degree-1-discs and Remove-degree-2-discs. These need to know the14
intersections of the discs p(d) with the feasible regions, which are the discs in Q̃ in the beginning.15
We store these intersections distributed with every point p ∈ P and store references with each16
feasible region to the p(d) it intersects. The initial set of the intersections can be computed using17
a sweep-line in O(m + n) log(m + n) time. The restrictions of the feasible regions can take at18
most O(m) time. Further we maintain one point set containing points p ∈ P with degree 1 and a19
second point set for points of degree 2. We move a point from the second to the first point set if its20
degree is decreased. Thus, having the initial intersection set, all calls of Remove-degree-1-discs21
without line 10 take O(m) time.22

The sub-algorithm Remove-degree-2-discs needs to iterate over all pairs of feasible regions.23
Instead of considering all possible pairs we only maintain a set of region pairs which indeed24
intersect some discs p(d). Because all D’s partition the points in P there are at most m discs25
to consider in the stabbing analysis from line 1 to 6, thus Remove-degree-2-discs needs O(m)26
time per call. Since it is called at most m times by Remove-degree-1-discs its overall running27
time is O(m2).28

Finally we need to compute a maximum matching in the bipartite graph. Using the algorithm of29
Hopcroft and Karp [8] this needs O(m

√
m+ n2) time.30

Putting all together we get a running time of O(m3 + m2n + ((m + n) log(m + n) + m2 +31
m
√
m+ n2) log(m3 +m2n)) which can be simplified to O(m3 +m2n+ n log2 n).32

5.4 Algorithm GrownDiscs33

In this section, we present an approximation algorithm for precise P and imprecise Q̃. As a34
subroutine in this algorithm, we assume that we are given an algorithm that computes a c-35
approximation to the geometric k-centre problem (see Section 2), in time T (k, n). We need this36
because when we have k discs of Q̃ which partially overlap, and there are n points of P in the37
overlap, computing a lower bound on the Hausdorff distance for this subset is exactly solving the38
geometric k-centre problem. Fig. 11(a) shows an example of the problem.39

We first compute the set of possible values of the Hausdorff distance using the algorithm Can-40
didates, followed by a binary search on the resulting candidate values in order to determine the41
smallest value d for which the predicate described below evaluates to true. Therefore, we now first42
describe a decision algorithm.43

Decision algorithm. Let d be any given positive value. If there exists a solution to our problem44
with distance at most d, the decision algorithm returns a solution with distance at most (c+2)d. If45

, 15

Q̃

P

(a) (b)

Fig. 11: (a) An example input, consisting of a set P of precise points and a set Q̃ of imprecise
points. (b) The optimal output. A set of circles of radius d is shown around the points in
Q, which cover the points in P .

A
Q̃

(a)

A{1,2}

q̃1
q̃′1

q̃′2
q̃2

(b)

Fig. 12: (a) The black circles form the arrangement A of the expanded discs Q̃′. (b) Each cell of
the arrangement is determined by the indices of the discs it lies inside.

no solution of distance at most d exists, the algorithm either still returns a solution with distance1
at most (c+ 2)d, or it returns false.2

Let q̃1, . . . , q̃n be the discs in Q̃ where disc q̃i has radius ri. We define the grown disc q̃′i to be the3
disc with the same centre point as q̃i, but with radius ri + d. We call the resulting set Q̃′.4

Observation 2: If P is not covered by Q̃′, then there exists no solution of value d.5

The correctness of Observation 2 is easy to see. Suppose the Hausdorff distance was smaller than6
or equal d, then every point of P would lie at most d away from a placement of a point q̃ and thus7
lie within Q̃′.8

So, we assume P is covered by Q̃′. We can test this easily, and immediately return false if this is9
not the case. Now, we compute the arrangement A of Q̃′, i.e. the partition of the plane formed by10
the boundary of the expanded discs. This arrangement has a quadratic complexity in the worst11
case. Fig. 12(a) shows an example of the arrangement. If I ⊆ {1, . . . , n} is a certain set of indices,12
denote by AI the cell of the arrangement in the intersection of all discs {q̃′i | i ∈ I}, but not inside13
any other disc. (Of course, most of these cells do not exist, since there is only a quadratic number14
of cells.) Each cell of this arrangement contains a subset of P ; we define PI to be the set of points15
of P inside AI . Fig. 12(b) shows an example.16

Observation 3: Let I be a set of indices. In the optimal solution Q b Q̃, all the points of PI are17
covered by circles of radius d around the points in {qi | i ∈ I}.18

Proof: Since the optimal solution has Hausdorff distance h(P,Q) ≤ d, we know that each point19
p ∈ P is covered by some circle of radius d around a point q ∈ Q. Now assume that p ∈ PI . Then20
we know that |pq| ≤ d, and q ∈ q̃, therefore p ∈ q̃′. So, by definition of AI , q must be qi for some21
i ∈ I. �22

This observation suggests we can solve the problem somehow separately in each cell of A. For a23
given cell AI , the optimal solution uses kI ≤ |I| circles of radius d (centred around points of Q)24

, 16

AI

P

(a)

AI

P

(b)

AI

P

(c)

Fig. 13: (a) A cell AI of the arrangement, and a set of two circles of radius d covering PI in the
optimal solution. (b) A different set of at most two circles of radius cd covering PI , as
produced by the subroutine. (c) The enlarged circles with radius (c + 2)d also cover all
points outside AI that could be covered by the circles of the optimal solution.

to cover the points in PI . Now, we could compute such a set of circles (most likely a different1
set) by applying the c-approximation algorithm for geometric k-centre O(log kI) times in binary2
search-like fashion on the value of k, until we find the smallest number k′I for which the algorithm3
returns a solution of radius smaller than cd. Note that the approximation guarantee implies that4
k′I ≤ kI . This would provide us a set CI of k′I ≤ kI circles of radius cd that cover PI . However,5
there is a problem with this approach. The solutions are not independent: it is possible that a6
certain circle of the optimal solution covers points from two different cells of the arrangement.7
This means we may have constructed more than n circles.8

So, what we do instead is this. We process the cells of the arrangement in any order. For the first9
cell AI , we compute a set CI of at most kI circles of radius cd that cover PI . Now, we grow our10
circles until they have radius (c + 2)d. This ensures that any points of P outside AI that were11
covered by discs of the optimal solution that were covering any points of PI , are now also covered12
by CI . Fig. 13 illustrates this.13

A second complication comes from the fact that we required the centres of the circles to be in14
Q̃, not just in Q̃′. In order to ensure this, we simply move the circle centres to the closest point15
in their discs, moving them by at most d. Since the circles are enlarged by 2d, the moved and16
enlarged circles will still cover all points of P that were covered by the original circles. Fig. 1417
shows this case. Furthermore, this case does not interfere with the case described above, because18
a circle cannot at the same time be close to the boundary of AI and far enough away from it not19
to cover a point that is covered by a circle that also covers a point from a neighbouring cell.20

For each next cell, we only consider those points that have not been covered yet, and otherwise21
proceed in the same way.22

This procedure results in a set C of at most n circles, composed of a set CI for each cell AI23
of the arrangement. This set has the property that each CI contains no more circles than the24
corresponding set in the optimal solution. This implies that there exists a matching between C25
and Q̃′ in the graph that has an edge between circle o and disc q̃′i if c is in a set CI where i ∈ I.26
Clearly, this means that the centre of o is inside q̃′i. Since an optimal matching exists, we can also27
compute one efficiently (although it may be a different one).28

For each value d, we spend O(n2) time to compute A, and log kI · T (kI , |PI |) time per cell to29
solve the geometric k-centre problem. If k is the largest value of kI over all I, then a crude upper30
bound for this is n2T (k,m). As seen in the previous section, a matching can be computed in31
O(mn + m

√
m) time [8]. So, we spend O(n2 log k · T (k,m) + mn + m

√
m) time in total on the32

decision algorithm.33

We can summarise:34

Lemma 3: Let a value d and an algorithm that can compute a c-approximation to the geometric35

, 17

P

(a)

P

(b)

P

(c)

Fig. 14: (a) A circle of radius cd covers a number of points of PI inside a certain cell AI of the
arrangement. The centre q of the circle lies inside AI , but not inside the region q̃. (b)
The point q has been moved into q̃, but now some points of PI that were covered are no
longer covered. (c) The enlarged circle of radius (c+ 2)d covers the points again.

k-centre problem in time T (k, n) be given. We can compute, in O(n2 log k ·T (k,m)+mn+m
√
m)1

time, either a solution with distance d′ that is at most (c+ 2) times larger than d, or decide that2
no solution of distance d exists.3

Optimisation algorithm. We now describe how to use the decision algorithm to obtain an opti-4
misation algorithm. First, we compute the set of possible values of the Hausdorff distance using5
algorithm Candidates. Then we do a binary search on the value of d, by picking the middle of6
the remaining candidates and recursing up if the decision algorithm returns “no” or down if it7
returns a solution. This procedure will result in two consecutive candidate values d1 and d2, such8
that d1 returns no solution but d2 does. Let d′ be the solution returned by the decision algorithm9
run on d2, and let d∗ be the optimal solution. Then we know that d′ ≤ (c + 2)d2. We also know10
that d∗ > d1, and since the next candidate is d2, this means d∗ ≥ d2. Therefore, d′ ≤ (c + 2)d∗.11
Since obviously also d∗ ≤ d′, we conclude that d′ is a (c+ 2) approximation of d∗.12

As for the running time, we first execute Candidates in O(m3 + m2n) time. This results in a13
set of O(m3 +m2n) candidates; doing a binary search on them we execute the decision algorithm14
described above O(log(m+n)) times, for a total of O((n2 log k ·T (k,m) +mn+m

√
m) logm+ n)15

time. Some terms are dominated by the computation of the algorithms, which results in the16
following theorem:17

Theorem 7: Let P denote a precise point set consisting of m points and Q̃ denote an imprecise18
point set consisting of n discs. Given a c-approximation to the geometric k-covering problem that19
runs in T (k,m) time, we can compute a (c+2)-approximation to the tight lower bound of h(P, Q̃)20
in O(m3 +m2n+mn log(m+ n) + n2 log(m+ n) log k · T (k,m)) time, where k ≤ n is an internal21
parameter of the optimal solution.22

5.5 Algorithm CentrePoints23

A trivial algorithm is to place all points in Q in the centres of their discs. This algorithm is a24
c-approximation if the smallest possible Hausdorff distance is at least rmax/(c − 1), where rmax25
denotes the radius of the largest disc in Q̃.26

Lemma 4: Let P denote a precise point set consisting of m points and Q̃ denote an imprecise point27
set consisting of n discs. We can compute a c-approximation to the tight lower bound of h(P, Q̃)28
if the Hausdorff distance is at least rmax/(c− 1), where rmax denotes the radius of the largest disc29
in Q̃.30

, 18

(a) (b)

Fig. 15: (a) Four disjoint discs of radius r of Q̃ can be laid out such that the arrangement of
enlarged circles of radius 1 1

2r have a common intersection. (b) With five discs, this is not
possible anymore.

5.6 Putting the algorithms together1

When P is precise and Q̃ is imprecise, we note that by Theorem 7 Algorithm GrownDiscs2
immediately presents a 4-approximation for the case when the discs may have different radii and3
overlap, which we obtain by plugging in a 2-approximation algorithm for geometric k-covering4
that runs in O(m log k) time [4]. (Note that although the authors also present a solution for5
approximating the value of k for a fixed radius that achieves the much better approximation6
factor of (1 + ε), we cannot use that solution since we require a guarantee on the radius, not the7
number of disks.)8

Corollary 2: Let P denote a precise point set consisting of m points and Q̃ denote an imprecise9
point set consisting of n discs. We can compute a 4-approximation to the tight lower bound of10
h(P, Q̃) in O(m3 +m2n+mn2 log(m+ n) log2 n) time in the worst case.11

We can improve this algorithm by first testing whether the tight lower bound is smaller than12

rmin(
√

5− 2
√

3 − 1)/2 where rmin denotes the radius of the smallest disc in Q̃ using Algorithm13
IndependentSets, without increasing the asymptotic running time. If it is, then we can actually14
compute the exact solution.15

Furthermore, when the discs are disjoint and all have the same size, we can improve this result to16
a 3-approximation by combining the algorithms GrownDiscs and CentrePoints:17

Theorem 8: Let P denote a precise point set consisting of m points and Q̃ denote an imprecise18
point set consisting of n disjoint discs of the same radius. The tight lower bound for h(P, Q̃) is19
3-approximable in time O(m3 +m2n+ n log2 n).20

First we test whether the lower bound on the Hausdorff distance is at least r/2 by applying21
CentrePoints and checking whether the resulting distance is at least 3/2r. If it is, we are done.22
Otherwise, note that each cell of A is a subset of the intersection of k ≤ 4 discs, because Q̃’s23
discs are disjoint and the Hausdorff distance is less than r/2, see Fig. 15(a) and 15(b). Therefore,24
by Theorem 7 we can obtain a 3-approximation from Algorithm GrownDiscs by plugging in an25
exact algorithm to solve the geometric 4-covering problem.26

We can solve the geometric 4-covering problem exactly by computing the arrangement of discs of27
radius d around the points to be covered. The arrangement has quadratic complexity. We need28
to find out whether there is a set of four cells such that every disc of the arrangement contains29

at least one of the cells. There are
(
O(m2)

4

)
∈ O(m8) such combinations to test, and by keeping30

track of which discs are already taken care of each can be tested in constant time. So, using this31
algorithm, we have a 1 + 2 = 3-approximation to the original problem for disjoint unit discs. The32
total running time now becomes O(n2m8 log(m+ n)).33

, 19

6 Conclusions and Future Work1

We study computing tight lower and upper bounds on the directed Hausdorff distance between2
two point set, when at least one of the sets has imprecision. We give efficient exact algorithms for3
computing the upper bound, prove that computing the lower bound is NP-hard in most settings,4
and provide approximation algorithms. Furthermore, we show that in one special case, our approx-5
imation algorithm is optimal. In other settings, a gap in the factor between the hardness result6
and approximation still remains. When both sets are imprecise, we do not have any constructive7
results for the lower bound.8

All our results hold for the directed Hausdorff distance. A next step would be to extend them to the9
undirected Hausdorff distance. We can immediately solve the upper bound problem in that case10
using our results, since it is just the maximum of the two directed distances. However, computing11
lower bounds seems to be more complicated, because one needs to find a single placement of both12
point sets that minimises the distance in both directions at the same time.13

Other directions of future work include looking at underlying metrics other than the Euclidean14
metric, similarity measures other than the Hausdorff distance, or, as is common in shape matching,15
allowing some transformation of the point sets.16

Acknowledgments17

This research was initiated during the Computational Geometry Workshop on Imprecise Data,18
which was held in December 2008 in Sydney and partly supported by NICTA. The authors thank19
the other participants of the workshop for helpful discussions and for providing a stimulating20
working environment, and also the anonymous reviewers of an earlier version of this paper for21
their suggestions and comments. NICTA is funded by the Australian Government as represented by22
the Department of Broadband, Communications and the Digital Economy and the Australian Research23
Council through the ICT Centre of Excellence program. M. Löffler was supported by the Netherlands24
Organisation for Scientific Research (NWO) under the project GOGO, and by the U.S. Office of Naval25
Research under grant N00014-08-1-1015. C. Knauer and M. Scherfenberg were supported by the German26
Research Foundation (DFG), grant AL 253/5-2.27

References28

[1] H.-K. Ahn, C. Knauer, M. Scherfenberg, L. Schlipf, and A. Vigneron. Computing the discrete Fréchet29
distance with imprecise input. In O. Cheong, K.-Y. Chwa, and K. Park, editors, Algorithms and30
Computation, volume 6507 of Lecture Notes in Computer Science, pages 422–433. Springer Berlin /31
Heidelberg, 2010.32

[2] H. Alt, B. Behrends, and J. Blömer. Approximate matching of polygonal shapes. Annals of Mathe-33
matics and Artificial Intelligence, 13(3-4):251–265, 1995.34

[3] H. Alt and L. Guibas. Handbook on Computational Geometry, chapter Discrete Geometric Shapes:35
Matching, Interpolation, and Approximation - A Survey, pages 251–265. 1995.36

[4] T. Feder and D. Greene. Optimal algorithms for approximate clustering. In Proceedings of the37
twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, pages 434–444, New York,38
NY, USA, 1988. ACM.39

[5] S. J. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153–174, 1987.40

[6] M. T. Goodrich and J. Snoeyink. Stabbing parallel segments with a convex polygon. Computer41
Vision, Graphics, and Image Processing, 49(2):152–170, 1990.42

[7] L. J. Guibas, D. Salesin, and J. Stolfi. Epsilon geometry: building robust algorithms from imprecise43
computations. In Proceedings of the fifth Annual Symposium on Computational Geometry, SCG ’89,44
pages 208–217, New York, NY, USA, 1989. ACM.45

, 20

[8] J. E. Hopcroft and R. M. Karp. An n
5
2 algorithm for maximum matching in bipartite graphs. SIAM1

Journal on Computing, 2(4):225–231, 1973.2

[9] D. Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing, 11(2):329–343, 1982.3

[10] M. Löffler and M. van Kreveld. Largest bounding box, smallest diameter, and related problems on4
imprecise points. Computational Geometry: Theory and Applications, 43:419–433, 2010.5

[11] A. Mukhopadhyay, E. Greene, and S. V. Rao. On intersecting a set of isothetic line segments with6
a convex polygon of minimum area. International Journal of Computational Geometry and Applica-7
tions, 19(6):557–577, 2009.8

[12] A. Mukhopadhyay, C. Kumar, E. Greene, and B. Bhattacharya. On intersecting a set of parallel9
line segments with a convex polygon of minimum area. Information Processing Letters, 105(2):58–64,10
2008.11

[13] T. Nagai and N. Tokura. Tight error bounds of geometric problems on convex objects with impre-12
cise coordinates. In Revised Papers from the Japanese Conference on Discrete and Computational13
Geometry, JCDCG ’00, pages 252–263, London, UK, 2001. Springer-Verlag.14

